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Abstract
We describe the sol–gel transition by introducing an order parameter, defined as the average of
local variables, and its fluctuations. It can be shown that these quantities are related to
percolation quantities, but in principle they can be measured without resorting to connectivity
properties. In this framework it appears that the dynamical transition associated with gelation is
a real thermodynamic transition, as happens in spin glasses. The strong analogies between the
sol–gel transition and the spin glass transition are also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The sol–gel transition is a transition of a fluid (sol) into a
disordered solid during which the diverging viscosity and the
developing elastic modulus follow a power law behavior. Such
a transition was interpreted [1, 2] in terms of the appearance of
a percolating cluster of monomers linked by bonds [3]. This
correspondence was confirmed by experimental measurements
of the geometric properties of gels (for a review see [4]
and references therein). More recently, random solidification
for systems with permanent random constraints (such as, for
example, vulcanized rubber and chemical gels) was studied at
the mean-field level via the replica technique [5] and via field
theoretical calculations [6]. In particular it was shown that the
critical properties of the sol–gel transition and the percolation
transition are identical.

We have investigated [7] the sol–gel transition both
analytically and numerically with a model for permanent gels
where bonds are modeled by a finitely extendible nonlinear
elastic (FENE) potential [8, 9] between neighboring particles.
In the first part of this paper (sections 2 and 3) we review the
results recently obtained in this model, where the formation of
permanent bonds between the particles leads to a percolation

transition, in the universality class of random percolation,
and a dynamical transition typical of the sol–gel transition is
observed. In the second part of the paper we describe the sol–
gel transition by introducing an order parameter, defined as
the average of local variables, and its fluctuations. It can be
shown that these quantities are exactly related to percolation
quantities, but in principle they can be measured without
resorting to connectivity properties (see section 4). In this
framework it appears that the dynamical transition associated
with gelation is a real thermodynamic transition, as happens
in spin glasses. The strong analogies between the sol–gel
transition and the spin glass transition [5, 10] will be discussed
in section 5.

Finally in section 6, we discuss the case of reversible gels,
where bonds have a finite lifetime and the gelation transition,
differently from permanent gels, does not correspond to a real
thermodynamic transition [11].

2. Model and numerical simulations

We consider a 3d system of N particles interacting with a
soft potential given by the Weeks–Chandler–Andersen (WCA)
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potential [12]:

U WCA
i j =

{
4ε[(σ/ri j)

12 − (σ/ri j)
6 + 1

4 ], ri j < 21/6σ

0, ri j � 21/6σ ,
(1)

where ri j is the distance between the particles i and j .
After the equilibration, particles distant less than R0 are

linked by adding an attractive potential:

U FENE
i j =

{
−0.5k0 R2

0 ln[1 − (ri j/R0)
2], ri j < R0

∞, ri j � R0

(2)
representing the FENE potential, introduced in [8] and widely
used to study linear polymers [9]. We choose k0 = 30ε/σ 2 and
R0 = 1.5σ as in [9] in order to avoid any bond crossing and to
use an integration time step �t not too small. The introduction
of the FENE potential leads to the formation of permanent
bonds among all the particles whose distance at that time is
smaller than R0.

We have performed molecular dynamics simulations of
this model: the equations of motion were solved in the
canonical ensemble (with a Nosé–Hoover thermostat) using the
velocity-Verlet algorithm [13] with a time step �t = 0.001δτ ,
where δτ = σ(m/ε)1/2 is the standard unit time for a Lennard-
Jones fluid and m is the mass of the particle. We use reduced
units where the unit length is σ , the unit energy is ε and the
Boltzmann constant kB is set equal to 1. We choose periodic
boundary conditions and average all the investigated quantities
over 32 independent bond configurations.

The temperature is fixed at T = 2 and the volume
fraction φ = πσ 3 N/6L3 (where L is the linear size of the
simulation box in units of σ ) is varied from below to above
the percolation threshold. In agreement with the percolation
approach, we identify the gel phase as the state in which there
is a percolating cluster [1, 2]. Using a finite size scaling
analysis [7] we find that the threshold is φc = 0.09 ± 0.01
and the critical exponents coincide, within numerical error,
with those of random percolation. In the following we fix the
number of particles, N = 1000.

3. Self-intermediate scattering function and its
fluctuations

Relevant information on the relaxation dynamics over different
length scales can be obtained from the self-intermediate
scattering functions (ISF) Fs(k, t):

Fs(k, t) = [〈	s(k, t)〉] , (3)

where 〈· · ·〉 is the thermal average over a fixed bond
configuration, [· · ·] is the average over bond configurations of
the system and

	s(k, t) = 1

N

N∑
i=1

eik·(ri (t)−ri (0)). (4)

We find that, near the threshold, Fs(k, t) for a low wavevector
is well fitted as a function of time by t−z exp(−(t/τ)β),

Figure 1. (Colour online) Dynamical susceptibility, χ4(k, t), as a
function of time for k = kmin and different volume fractions
φ = 0.05, 0.06, 0.07, 0.08 and 0.09 (from bottom to top).

with z and β not dependent on φ. This form is obtained
analytically from the cluster size distribution, and is confirmed
by numerical data [14].

Here we review the discussion, presented in [7], about the
behavior, near the sol–gel transition, of the fluctuations of the
self-ISF:

χ4(k, t) = N[〈|	s(k, t)|2〉 − 〈	s(k, t)〉2]. (5)

Different from the behavior typically observed in glassy
systems, we find that, for φ < φc, χ4(k, t) is a monotonically
increasing function of time tending to a plateau at a time
of the order of the relaxation time τ (kmin) (see figure 1,
where χ4(k, t) is plotted for k = kmin and different volume
fractions). The value of the plateau diverges as the mean
cluster size approaches the percolation threshold from the
sol. For φ � φc the system is out of equilibrium and
χ4(k, t) continues increasing as a function of time, without
reaching any asymptotic value within the simulation time.
In [7] it was shown that, for k → 0 and t → ∞, the
dynamical susceptibility χ4(k, t) tends to the mean cluster
size. We define χas(k, φ) ≡ limN→∞ limt→∞ χ4(k, t). Being
limt→∞〈	s(k, t)〉 = 0, we have

χas(k, φ) = lim
N→∞

1

N

[
N∑

i, j=1

Ci j (k)

]
, (6)

where Ci j(k) = limt→∞〈eik·(ri (t)−r j (t))e−ik·(ri (0)−r j (0))〉 =
|〈eik·(ri −r j )〉|2. Here we have used the fact that, for
large enough time t , the term e−ik·(ri (t)−r j (t)) is statistically
independent of e−ik·(ri (0)−r j (0)), so that we can factorize the
thermal average. We separate the sum over connected pairs
(γi j = 1, i.e. pairs belonging to the same cluster) and
disconnected pairs (γi j = 0, i.e. pairs belonging to different
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clusters), so that

χas(k, φ) = lim
N→∞

1

N

[
N∑

i, j=1

|〈eik·(ri −r j )〉|2
]

lim
N→∞

1

N

[
N∑

i, j=1

γi j Ci j (k)

]
+ 1

N

[
N∑

i, j=1

(1 − γi j)Ci j (k)

]
.

(7)
If particles i and j are not connected, for any fixed value of k >

0, the quantity Ci j(k) is O(1/N2).5 As there are at most N2

disconnected pairs, the second term of the rhs of equation (7)
is O(1/N) and can be neglected in the thermodynamical limit.
For φ < φc, clusters will have at most a linear size of order ξ ,
so that the relative distance |ri −r j | of connected particles will
be smaller than ξ . Therefore we have limk→0 γi jCi j (k) = γi j

and

lim
k→0

χas(k, φ) = lim
N→∞

1

N

[
N∑

i, j=1

γi j

]
= S, (9)

where S is the mean cluster size. As shown in [7], numerical
data confirm this result.

In figure 2, χ4(k, φ) is plotted for φ = 0.09 and different
wavevectors. For each value of the wavevector, χ4(k, φ)

reaches a plateau after a characteristic time of the order of
the relaxation time, τ (k). Using scaling arguments [7], we
can write the asymptotic value as χas(k, φ) = kη−2 f (kξ),
where f (z) is a function, which tends to a constant for small
z, whereas it behaves as zγ /ν for large values of z, where
2 − η = γ /ν. As shown in [7], the data obtained in the
FENE model support this scenario. In the inset of figure 2,
χas(k, φ) is plotted at the threshold as a function of k: at low
wavevectors the data are fitted with a power law, kη−2, with an
exponent 2−η = 2.03±0.02, consistent, within the numerical
accuracy, with the prediction of random percolation [3]. All
these results coherently show how in the present system the
asymptotic value of the dynamical susceptibility is related
to the cluster size. Our results not only indicate that the
percolation exponents can be measured in a direct way, by
developing techniques to measure the dynamical susceptibility,
but they also state that the asymptotic value of the dynamical
susceptibility plays the same role at the sol–gel transition as
the static scattering function near the liquid–gas critical point.

4. Order parameter and spatial correlation function

In the previous section we have discussed the dynamical
behavior in a system approaching the gelation transition from
the sol. Here we consider the static properties of the transition.

On the basis of results shown in section 3, in analogy
with glasses and spin glasses [15], we suggest that the order

5 We can write

〈e−ik·(ri −r j )〉 = 1

N

∫
d3r e−ik·rρ[hi j (r) + 1], (8)

where ρ = N/V , hi j (r) + 1 = gi j (r) and (1/V )gi j (r) gives the probability
density of finding the particle i in r, given the particle j in the origin. For
disconnected pairs, in the thermodynamic limit (N → ∞ and L → ∞ leaving
the density ρ constant) the integral in equation (8) remains finite for any finite
fixed k, so that the lhs of equation (8) is O(1/N). The quantity Cij (k), being
the square modulus of the lhs of equation (8), is therefore O(1/N2).

Figure 2. (Colour online) Main frame: dynamical susceptibility,
χ4(k, t), as a function of time for φ = 0.09 and k = 0.35, 0.61, 0.99,
1.40, 2.10, 3.96 (from top to bottom). Inset: asymptotic values of the
susceptibility, χas(k, φc) as a function of the wavevector k. Data are
fitted with a power law ∼ k−2.03±0.02, in agreement with the exponent
2 − η of random percolation.

parameter for the sol–gel transition is given by the k = 0 limit
of the long time limit of the self-ISF, namely

qGEL ≡ lim
k→0

lim
t→∞ Fself(k, t) = lim

k→0

1

N

[
N∑

i=1

|〈eik·ri 〉|2
]

, (10)

where in this case 〈· · ·〉 is the time average6 over a fixed bond
configuration and [· · ·] is the average over bond configurations
of the system.

The meaning of the order parameter, equation (10), can
be understood following the interesting arguments presented
in [5], where a similar order parameter for the vulcanization
transition is introduced. In the sol phase, all particles are
delocalized, therefore, in the thermodynamic limit, 〈eik·r j 〉 =
δk,0 for each j , and qGEL is always zero. In the gel phase,
some fraction of particles are localized. In the hypothesis that
particle positions are distributed as Gaussians with average
〈r j 〉 and mean squared displacement ξ 2

j , 〈eik·r j 〉 can be written

as eik·〈r j 〉e−ξ 2
j k2/2. If particle j is delocalized (ξ j → ∞), again

|〈eik·r j 〉|2 → 0 for each finite value of k (the k = 0 value
is instead 1). If particle j is localized, ξ j is finite and the
k → 0 limit is 1. Therefore qGEL gives the density of localized
particles. The main contribution to the localized particles
comes from particles which are in the percolating cluster, but
there is also a small fraction which comes from particles or
clusters trapped inside the percolating cluster.

The order parameter, equation (10), can also be obtained,
in analogy with spin glasses, considering two replicas of the
system with the same bond configuration. We define

q = 1

N
lim
k→0

N∑
i=1

eik·r(1)
i e−ik·r(2)

i , (11)

6 The thermal average 〈eik·ri 〉 is zero both in the sol and in the gel phase.
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where r
(1)

i and r
(2)

i are the positions of the particle i
respectively in replicas 1 and 2. Introducing a coupling
ε
∑

i |r(1)
i − r

(2)
i |2 between replicas, the order parameter,

equation (10), can be written as

qGEL = [〈q〉1,2
]
, (12)

where the average 〈· · ·〉1,2 is the ε → 0 limit of the
thermal average over the two replicas. In this formalism, the
fluctuations of the order parameter are given by

χGEL = N
[〈|q|2〉1,2 − |〈q〉1,2|2

]
. (13)

In particular, in the sol phase

χGEL = lim
k,k′→0

1

N

[
N∑

i, j=1

〈eik·(r(1)
i −r

(1)
j )〉〈e−ik′·(r(2)

i −r
(2)
j )〉

]
, (14)

which coincides with limk→0 χas(k, φ), equation (7), which we
have shown to coincide with the mean cluster size.

Finally, in the sol phase, the pair correlation function can
be defined in the k-space as

p̃(k) = 1

N

[
lim
k′→0

N∑
i, j=1

〈eik·(ri −r j )〉〈e−ik′·(ri −r j )〉
]

. (15)

Following the arguments already discussed (see footnote 5), we
have

p̃(k) = 1

N

[
N∑

i, j=1

γi j〈eik·(ri −r j )〉
]

, (16)

where again γi j = 1 for i and j belonging to the same
cluster and zero otherwise. The Fourier transform gives the
pair connectedness function (see also [16]):

p(r) = 1

V

∑
k

eik·r p̃(k) = 1

N

[
N∑

i, j=1

γi j〈δ(r − (ri − r j ))〉
]

,

(17)
where p(r) dr gives the probability that a particle at the origin
is connected to a particle in an element of volume dr at a
distance r. From percolation theory [3] we know that p(r) ∼
r−(d−2+η) f1(r/ξ), where d is the spatial dimension and f1(x)

behaves as a constant for x → 0, and goes to zero for x → ∞.
In figure 3, p(r) is plotted in the FENE model for different
volume fractions in the sol phase. Near the gelation threshold,
we find that p(r) is well fitted, at long distance, by r−(1+η)e−r/ξ

(continuous curves in figure), where ξ increases as a function
of the volume fraction. At low volume fractions the data are
instead well fitted by simple exponentials.

In section 3, we have shown that χas(k, φ) =
1
N [∑N

i, j=1 |〈eik·(ri −r j )〉|2], equation (7), has the same scaling
form as p̃(k). The advantage in using χas(k, φ) is that, in
principle, it may be easier to detect experimentally. The spatial
correlation function, G(r) = 1

V

∑
k eik·rχas(k, φ), differs from

p(r) only for a function whose integral over space is zero.
In fact

∫
dr G(r) = ∫

dr p(r) = S. G(r), measured in
the FENE model, appears to be an oscillating function around
p(r).

Figure 3. (Colour online) The pair connectedness function, p(r), for
φ = 0.05, 0.08, 0.085, 0.09, 0.095, 0.1 (from left to right). The
curves in the figure are the fitting functions r−(1+η)e−r/ξ , with ξ
increasing as a function of φ.

5. Spin glass analogy

In this framework, the analogies between chemical gels and
spin glasses appear evident. Note that in both equation (10)
and in equation (7) the squared modulus of each term is
considered. As in spin glasses, in fact, the corresponding
quantities obtained without the squared modulus display trivial
behaviors. Following the arguments of previous sections [5],
it is easy to see that the density Fourier transform, ρ(k) =∑N

i=1〈eik·ri 〉, fails to distinguish between the sol and the gel,
as the magnetization fails to distinguish between paramagnetic
and spin glass states. Using the Gaussian approximation, we
see that, even if some fraction of N particles are localized (ξ
finite), their mean positions 〈r j 〉 are random, then for each
finite value of k the different terms add destructively in ρ(k) =∑N

i=1〈eik·ri 〉 and the limit k → 0 is always zero [5]. The
squared modulus present in equation (10) allows us to avoid
this destructive interference.

No sign of gelation is again seen in numerical and
experimental measurements of the static structure factor,
S(k) = 1

N [∑i, j 〈eik·(ri −r j )〉]. In figure 4 the static structure
factor, S(k), is shown in the FENE model for chemical gels
at different volume fractions, below and above the gelation
threshold. As we see in the figure, the low k limit of the static
structure factor, S(k), is always small compared to both the
number of particles and the mean cluster size. In figure 5,
the contributions to the static structure factor of disconnected
particles, and of connected ones, are respectively plotted.
They apparently interfere in a destructive way. Again, the
squared modulus present in equation (7) allows us to avoid this
destructive interference.

Strong analogies between gels and spin glasses are also
observed in the dynamical properties. In fact, the time-
dependent order parameter is well fitted in both cases by
t−z exp(−(t/τ)β) [14, 17] and in both cases the dynamical
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Figure 4. (Colour online) Static structure factor, S(k), for φ = 0.02,
0.06, 0.07, 0.085, 0.09, 0.095, 0.1, 0.11, 0.12 (full circles for
φ � φc ∼ 0.095 and empty circles for φ > φc). Continuous lines are
a guide for the eyes.

Figure 5. (Colour online) Contribution to the static structure factor
for φ = 0.08 of connected particles (full triangles) and disconnected
ones (void circles). Continuous lines are a guide for the eyes.

susceptibility, χ4(t), defined as the fluctuations of the time-
dependent order parameter, increases as a function of time
until a plateau value, which coincides with the static nonlinear
susceptibility and diverges at the transition [10, 18]. As in spin
glasses, in chemical gels the divergence of the static nonlinear
susceptibility is also indicative of a true thermodynamic
transition.

6. Reversible gels

In the previous sections we have shown that in chemical
gels, where the structural arrest is related to the formation of

clusters of bonded particles, the dynamical susceptibility can
be directly connected to the clusters. One can ask how this
picture modifies in reversible gels, where bonds have a finite
lifetime and the gelation transition does not correspond to a
real thermodynamic transition.

This problem was studied [19] numerically using a DLVO
type of interaction potential [20–22]. This model describes
the presence of short range attraction well, due to depletion
interactions, and long range repulsion, due to screening of
Coulombic interactions, in a suspension of colloidal particles.
The structural relaxation displays a slowing down with gel-
like features at low temperatures and low volume fractions,
due to the formation of persistent structures. By further
increasing the volume fraction a crossover to a more glassy-
like regime appears. In the gel-like regime the dynamical
susceptibility exhibits a large plateau, dominated by clusters
of long living bonds, as in chemical gels. Upon increasing
the volume fraction, when the effect of the crowding of the
particles starts to be present, the dynamical susceptibility
instead displays a peak, as is usual in glassy systems. In
the gel-like regime a suitable mean cluster size of clusters
of monomers connected by ‘persistent’ bonds describes well
the dynamical susceptibility [19]. However, due to the finite
lifetime of the bonds the dynamical susceptibility tends to 1
and the gelation transition, differently from permanent gels,
does not correspond to a real thermodynamic transition.

We suggest that these findings may be more generally
related to reversible gelation [23–25]. In particular, in
the copolymer micellar system L64 studied in [23] (where
the short range attraction is due to effective intermicellar
interaction), a transient gelation phenomenon followed by a
structural arrest is also observed experimentally: for a fixed
value of the temperature, as a function of the volume fraction,
the viscosity increases, reaches a plateau and then increases
again at higher volume fraction. In this process the rheological
properties exhibit a crossover from gelation to a structural
arrest typical of the glass transition. We suggest that the
dynamical susceptibility, in the copolymer micellar system
L64 studied in [23], displays the same type of behavior found
in the DLVO model [19].
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